258 research outputs found

    A bioassay for the detection of benzimidazoles reveals their presence in a range of environmental samples.

    Get PDF
    Cobamides are a family of enzyme cofactors that include vitamin B12 (cobalamin) and are produced solely by prokaryotes. Structural variability in the lower axial ligand has been observed in cobamides produced by diverse organisms. Of the three classes of lower ligands, the benzimidazoles are uniquely found in cobamides, whereas the purine and phenolic bases have additional biological functions. Many organisms acquire cobamides by salvaging and remodeling cobamides or their precursors from the environment. These processes require free benzimidazoles for incorporation as lower ligands, though the presence of benzimidazoles in the environment has not been previously investigated. Here, we report a new purification method and bioassay to measure the total free benzimidazole content of samples from microbial communities and laboratory media components. The bioassay relies on the "calcofluor-bright" phenotype of a bluB mutant of the model cobalamin-producing bacterium Sinorhizobium meliloti. The concentrations of individual benzimidazoles in these samples were measured by liquid chromatography-tandem mass spectrometry. Several benzimidazoles were detected in subpicomolar to subnanomolar concentrations in host-associated and environmental samples. In addition, benzimidazoles were found to be common contaminants of laboratory media components. These results suggest that benzimidazoles present in the environment and in laboratory media have the potential to influence microbial metabolic activities

    Incomplete Wood-Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi.

    Get PDF
    The acetyl-CoA "Wood-Ljungdahl" pathway couples the folate-mediated one-carbon (C1) metabolism to either CO2 reduction or acetate oxidation via acetyl-CoA. This pathway is distributed in diverse anaerobes and is used for both energy conservation and assimilation of C1 compounds. Genome annotations for all sequenced strains of Dehalococcoides mccartyi, an important bacterium involved in the bioremediation of chlorinated solvents, reveal homologous genes encoding an incomplete Wood-Ljungdahl pathway. Because this pathway lacks key enzymes for both C1 metabolism and CO2 reduction, its cellular functions remain elusive. Here we used D. mccartyi strain 195 as a model organism to investigate the metabolic function of this pathway and its impacts on the growth of strain 195. Surprisingly, this pathway cleaves acetyl-CoA to donate a methyl group for production of methyl-tetrahydrofolate (CH3-THF) for methionine biosynthesis, representing an unconventional strategy for generating CH3-THF in organisms without methylene-tetrahydrofolate reductase. Carbon monoxide (CO) was found to accumulate as an obligate by-product from the acetyl-CoA cleavage because of the lack of a CO dehydrogenase in strain 195. CO accumulation inhibits the sustainable growth and dechlorination of strain 195 maintained in pure cultures, but can be prevented by CO-metabolizing anaerobes that coexist with D. mccartyi, resulting in an unusual syntrophic association. We also found that this pathway incorporates exogenous formate to support serine biosynthesis. This study of the incomplete Wood-Ljungdahl pathway in D. mccartyi indicates a unique bacterial C1 metabolism that is critical for D. mccartyi growth and interactions in dechlorinating communities and may play a role in other anaerobic communities

    Improving human-robot interactivity for tele-operated industrial and service robot applications

    Get PDF
    In industrial robotics applications, teach pendant has been widely used by human operators to pre-define action trajectories for robot manipulators to execute as primitives. This hard-coding approach is only good for low-mix-highvolume jobs with sparse trajectory way-points. In this paper, we present a novel industrial robotic system designed for applications where human-robot interaction is key for efficient execution of actions such as high-mix-low-volume jobs. The proposed system comprises a robot manipulator that controls a tool (such as a soldering iron) to interact with the required workpiece, a networking server for remote tele-operation, and an integrated user interface that allows the human operator to better perceive the remote operation and to execute actions with greater ease. A user study is conducted to understand the merits of the proposed system. Results indicate that human can operate the system with ease and complete tasks more quickly and that the system can improve application efficiency

    Global diversity and biogeography of bacterial communities in wastewater treatment plants

    Get PDF
    Microorganisms in wastewater treatment plants (WWTPs) are essential for water purification to protect public and environmental health. However, the diversity of microorganisms and the factors that control it are poorly understood. Using a systematic global-sampling effort, we analysed the 16S ribosomal RNA gene sequences from ~1,200 activated sludge samples taken from 269 WWTPs in 23 countries on 6 continents. Our analyses revealed that the global activated sludge bacterial communities contain ~1 billion bacterial phylotypes with a Poisson lognormal diversity distribution. Despite this high diversity, activated sludge has a small, global core bacterial community (n = 28 operational taxonomic units) that is strongly linked to activated sludge performance. Meta-analyses with global datasets associate the activated sludge microbiomes most closely to freshwater populations. In contrast to macroorganism diversity, activated sludge bacterial communities show no latitudinal gradient. Furthermore, their spatial turnover is scale-dependent and appears to be largely driven by stochastic processes (dispersal and drift), although deterministic factors (temperature and organic input) are also important. Our findings enhance our mechanistic understanding of the global diversity and biogeography of activated sludge bacterial communities within a theoretical ecology framework and have important implications for microbial ecology and wastewater treatment processes
    • …
    corecore